Мы будем рады, если вы поддержите портал



Вконтакте Одноклассники Твиттер Фейсбук

красный зелёный голубой

Объявлено о самом объемном доказательстве в математике

Объявлено о самом объемном доказательстве в математике
ПОЛНЫЙ АНТИПАРАЗИТАРНЫЙ КОМПЛЕКТ (НА 10 ДНЕЙ ЧИСТКИ). ЛИМОННО ЭВКАЛИПТОВАЯ ЧИСТКА

Ученые из США и Великобритании заявили о крупнейшем по объему занятой компьютерной памяти доказательстве в истории математики. Препринт с исследованием опубликован на сайте arXiv.org, кратко о нем сообщает издание Nature.

Для решения булевой проблемы пифагоровых троек специалисты использовали суперкомпьютер Stampede Техасского университета в Остине (США). Его расчеты заняли 200 терабайт памяти, что равно всей оцифрованной крупнейшей библиотеке мира (Библиотека Конгресса).

В использованном учеными подходе проблема является переформулированной теоремой Шура для площадей, доказательство которой предполагает два предписания. Первое из них включает нахождение ответа на вопрос, может ли множество натуральных чисел (1, 2, 3 и так далее) быть разделено на две части таким образом, чтобы ни одна из них не содержала бы пифагоровых троек (то есть чисел a, b и c таких, что a2 + b2 = c2). Второе предписание говорит о необходимости разделения чисел при помощи булевых переменных.

Полученное учеными решение булевой проблемы пифагоровых троек заключается в следующем: натуральные числа из замкнутого интервала [1;7824] можно разбить на две части так, что они не содержат пифагоровой тройки. Для натуральных чисел из замкнутого интервала [1;7825] это невозможно.

Решенная учеными задача относится к дискретной математике. За нее в 1980 году математик Рональд Грэхем из Калифорнийского университета в Сан-Диего (США) предложил символические сто долларов.

Рекорд доказательных вычислений принадлежал британским математикам российского происхождения, которые в 2012 году проверили проблему несоответствия Эрдеша. Это заняло 13 гигабайт компьютерной памяти. Однако уже в 2015 году американский математик китайского происхождения Теренс Тао из Калифорнийского университета в Лос-Анджелесе представил аналитическое доказательство гипотезы Эрдеша.

Как правило, при аналитическом доказательстве ученые открывают новые математические структуры и закономерности, тогда как при вычислительном доказательстве это невозможно. В частности, ученые не могут объяснить роль числа 7824 в их решении.

Lenta.ru

Поставьте оценку:
Рейтинг 0 (Проголосовало: 0)
Понравилось? Поделитесь с друзьями через кнопки социальных сетей!

Добавить страницу в закладки

0
14:45
27
Популярные видео каналы