Мы будем рады, если вы поддержите портал



Вконтакте Одноклассники Твиттер Фейсбук

красный зелёный голубой

К загадке радиуса протона добавили дейтрон

К загадке радиуса протона добавили дейтрон
ПОЛНЫЙ АНТИПАРАЗИТАРНЫЙ КОМПЛЕКТ (НА 10 ДНЕЙ ЧИСТКИ). ЛИМОННО ЭВКАЛИПТОВАЯ ЧИСТКА

Международная коллаборация физиков CREMA обнаружила новые указания на то, что в радиусе протона есть неопределенность. Исследователи проанализировали поведение мюонного дейтерия — частицы, в которой вокруг ядра из нейтрона и протона вращается мюон. Оказалось, что зарядовый радиус дейтрона — ядра дейтерия — меньше, чем было установлено в экспериментах с обычным, электронным дейтерием. Теория предсказывает, что радиус частиц постоянен.

Точно такая же пара экспериментов с водородом и его мюонным аналогом указала ранее на расхождение в радиусе протона. Эксперимент может указывать на один из двух вариантов: либо неверна теория, описывающая взаимодействия в атоме, либо в экспериментах есть ошибка. Исследование опубликовано в журнале Science.

Зарядовый радиус протона можно определить по тому, как эта элементарная частица взаимодействует с отрицательными зарядами. К примеру, для этого используют эксперименты по рассеянию электронов на протоне — чем больше радиус протона, тем больше электронов из пучка будет отклоняться от своего пути, — а также анализ электронных переходов в атоме водорода. По данным современных измерений, радиус составляет 0,877 фемтометра, примерно в миллион миллиардов раз меньше метра.

В 2010 году группа физиков повторила измерения зарядового радиуса в системе с более тяжелым носителем отрицательного заряда — мюоным водородом. Мюон в 207 раз массивнее электрона и, в отличие от последнего, обладает временем жизни около двух микросекунд. Из-за большей массы мюона точность определения зарядового радиуса выше. В эксперименте ученые измеряли Лэмбовский сдвиг.

Оказалось, что зарядовый радиус протона меньше, чем в ранних измерениях, и составляет 0,841 фемтометра. После уточнения данных физики обнаружили, что независимые измерения одной и той же величины отличаются на семь стандартных отклонений. Причина этого до сих пор неизвестна — согласно квантовой электродинамике, зарядовый радиус протона должен быть постоянной величиной.

В новой работе физики оценили зарядовый радиус другой, более массивной частицы — дейтрона (ядра атома дейтерия). По аналогии с протоном, ученые сравнивали Лэмбовские сдвиги в электронном и мюонном дейтерии.

Лэмбовский сдвиг — разница в энергии между двумя электронными (или мюонными) состояниями в атоме, обозначаемыми 2S и 2P. Согласно простейшим квантово-механическим вычислениям, эти состояния должны быть равны по энергиям, однако на практике ученые обнаружили различия. Эти отличия связаны с взаимодействием электронов с флуктуациями вакуума, и по ним можно очень точно определить зарядовый радиус протона. В новых экспериментах с помощью лазера ученые изменяли состояния мюона в атоме.

Физики сделали на основе измерений новую оценку зарядового радиуса протона. Она оказалась еще меньше, чем предыдущие: 0,8356 фемтометра. Стоит отметить, что погрешность этой величины выше, чем в предыдущих мюонных измерениях.

Ученые отмечают, что для надежной проверки источников расхождений в радиусах протона необходимо провести дополнительные измерения. В частности, важную информацию можно получить из рассеяния мюонов на протонах — это должен проделать эксперимент MUSE, разрабатываемый на базе Института Пауля Шерера в Швейцарии.

Владимир Королёв

N+1

Поставьте оценку:
Рейтинг 0 (Проголосовало: 0)

ОЗДОРОВЛЕНИЕ И ДОХОД С КОРПОРАЦИЕЙ "СИБИРСКОЕ ЗДОРОВЬЕ"

Понравилось? Поделитесь с друзьями через кнопки социальных сетей!

Добавить страницу в закладки

0
17:26
26
Популярные видео каналы